1	1	Mark is for AO1	(knowledge)				1		
		XOR // Exclusive	OR // EOR // E	XOR;					
1	2	Mark is for AO1 (knowledge)							
		1 mark for correc	t column Q;						
			Α	В	Q				
			0	0	1				
			0	1	1				
			1	0	1				
			1	1	0				
1	3	Marks are for AC)2 (apply)				3		
		1 mark for having	A and B conn	ected to (differ	ent) NOT gate	98;			
		1 mark for an AN	D gate connec	ted to C and to	the output of	a NOT gate;			
		1 mark for an OR	gate connecte	ed to NOT A ar	nd NOT B ANI	O C and outputting to Q;			
		A							
		В———	<u> </u>		— Q				
		С							
		Max 2 if circuit no	t fully correct.						

2	1	Mark is for AO1 (knowledge)	1
		NOR;	
2	2	Marks are for AO2 (apply)	3
		Mark as follows	
		 1 mark for B and C into AND gate 1 mark for the result of B and C (I. incorrect gate) as one input and a NOT gated A as a second input to an OR gate 1 mark D connected to NOT gate and output of this to an AND gate, the results of A, B and C (I. previously incorrect gates) as the other input, with the output going into Q 	
		MAX 2 if not fully correct	
		A NOT OR AND Q	
		D NOT	
2	3	Mark is for AO1 (understanding)	1
		OR; A . A+B // +	

3	1	Mark is for AO1 (knowledge)	1
		A B A NAND B	
		0 0 1	
		0 1 1	
3	2	3 marks are for AO2 (apply)	3
		 mark for getting Part 1 or Part 2 correct on any of the three diagrams. mark for getting corresponding Part 1 or Part 2 correct on the same diagram. mark for getting corresponding Part 3 correct on the same diagram. 	
		MAX 2 if not fully correct	
		Mark response against diagram that will give the highest mark. Mark point 3 can only be awarded if at least one other mark point has been awarded.	
		di Alternative Diagram 1	
		, morrisant o Diagram .	
		2	

Qu	Pt	Marking Guidance	Marks
4	1	Mark is for AO1 (knowledge)	1
		NOR;	

Qu	Pt	Marking Guidance	Marks
4	2	Mark is for AO1 (knowledge)	1
		NAND; R. NOT AND	

Qu	Pt	Marking Guidance	Marks					
4	3 Marks are for AO2 (application)							
		1 mark for each design point						
		A and B are connected to the inputs of an AND gate and the output of the AND gate connected to the input of a NOT gate // A and B connected to the inputs of a NAND gate;						
		The final two gates in the circuit are an OR gate followed by a NOT gate // The final gate in the circuit is a NOR gate;						
		A. award 2 marks if the candidate has correctly simplified the Boolean expression and drawn a fully correct logic circuit.						
		MAX 1 if circuit does not correctly reflect the Boolean expression.						
		Possible answers:						
		A Q						
		A Q						

Qu	Pt		Marking Guidance M									
4	4	Marks are for	Marks are for AO2 (analyse)									
		1 mark for sho	1 mark for showing the correct truth table column for $(A + \overline{B}) \cdot B$;									
		1 mark for showing the correct truth table column for $\left(A+\overline{B}\right)$;										
		A	В	$\bar{\mathbf{B}}$	$\left(\mathbf{A} + \overline{\mathbf{B}}\right)$	$\left(\mathbf{A} + \overline{\mathbf{B}}\right) \cdot \mathbf{B}$						
		0	0	1	1	0						
		0	1	0	0	0						
		1	0	1	1	0						
		1 1 0 1 1										
		1 mark for showing the correct answer as $A \cdot B$;										

Qu	Pt		Marking Guidance									
5	1	Marks are for AO2 (application)										
		1 mark for each highlighted column L, N and Y completed correctly.										
		Α	В	С	L	М	N	Х	Υ			
		0	0	0	0	0	0	0	0			
		0	0	1	0	0	0	1	0			
		0	1	0	1	0	0	1	0			
		0	1	1	1	1	0	0	1			
		1	0	0	1	0	0	1	0			
		1	0	1	1	1	0	0	1			
		1	1	0	0	0	1	0	1			
		1	1	1	0	0	1	1	1			
		A . Follow	through fo	r Y if colur	nn N is co	mpleted in	correctly.					

Qu	Pt	Marking Guidance	Marks
5	2	Marks are for AO2 (application)	2
		2 marks: $(A \oplus B) \cdot C + A \cdot B \# ((A \cdot \bar{B}) + (\bar{A} \cdot B)) \cdot C + A \cdot B \# (\bar{A} \cdot B \cdot C) + (A \cdot (B + C))$	
		<i>//</i>	
		 1 mark for one of the following somewhere in the expression: (A ⊕ B) · C I. presence / absence of brackets around A ⊕ B ((A · B̄) + (Ā · B)) · C A · B 	
		Note: If using a different algebraic notation refer to team leader.	

Qu	Pt	Marking Guidance	Marks
06	1	Mark is for AO1 (knowledge)	1
		XOR // EXOR // EX-OR // Exclusive-OR // EOR;	

Qu	Pt			N	/larking (Guidanc	е			Marks		
06	2	Marks are for AO2 (application)										
		1 mark for colu	1 mark for columns L and M correct									
		1 mark for column Z correct A. follow through of incorrect values in columns L and M										
			Α	В	С	L	M	Z				
			0	0	0	0	0	0				
			0	0	1	0	0	0				
			0	1	0	0	0	0				
			0	1	1	0	0	0				
			1	0	0	0	0	0				
			1	0	1	0	1	1				
			1	1	0	1	0	1				
			1	1	1	1	1	1				
		R. Entire colum	n if more	than one	e value s	hown in a	any cell c	of that col	umn.			

Qu	Pt	Marking Guidance	Marks
06	3	Marks are for AO2 (application)	3
		Award full marks for showing correct expression:	
		$Q = \overline{\overline{A.} B. (C + D)}$	
		Max 2 marks for showing partially correct expression:	
		1 mark for showing \overline{A} . B	
		1 mark for showing of C + D	
		1 mark for using AND and NOT gates to combine and invert subexpressions	
		Full marks should be awarded for equivalent expressions.	

Qu	Pt	Marking Guid	lance	Marks
06	4	Marks are for AO2 (application)		4
		Marking guidance for examiners		
		 Award marks for working out until an incorre If, in any one step, a candidate is simplifying simultaneously award all relevant marks for any further marks for working in any parts sit expression P.P.(P+Q) + P.P.1 was changed would get one mark for simplifying the first p marks for correctly simplifying this part of the awarded marks for simplifying the incorrectly 	different parts of an expression this multiple stage but don't award mplified incorrectly. Example, if the to P.(P+Q) + P.0, the candidate art to P.(P+Q) and could get further expression further but should not be	
		Award up to 3 marks for working. 1 mark per a produces a simplified expression. Of the 3 wor for correctly applying the Distributive Law to	king marks award at most 1 mark	
		Note: A simpler expression is one that is logical expression but uses fewer logical operators.	ally equivalent to the original	
		1 mark for final answer: $X \cdot Z + X \cdot Y + W \cdot Z$	or $X \cdot (Z + Y) + W \cdot Z$	
		Example working 1:		
		$\overline{W} \cdot X \cdot Z + W \cdot Z + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y \cdot 1$ $\overline{W} \cdot X \cdot Z + W \cdot Z + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y$ $Z \cdot (\overline{W} \cdot X + W) + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y$ $Z \cdot (X + W) + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y$ $X \cdot Z + W \cdot Z + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y$ $X \cdot (Z + Y \cdot \overline{Z}) + W \cdot Z + \overline{W} \cdot X \cdot Y$ $X \cdot (Z + Y) + W \cdot Z + \overline{W} \cdot X \cdot Y$ $X \cdot Z + X \cdot Y + W \cdot Z + \overline{W} \cdot X \cdot Y$ $X \cdot Z + X \cdot Y \cdot (1 + \overline{W}) + W \cdot Z$ $X \cdot (Z + Y) + W \cdot Z (optional step)$	Identity $A.1 = A$ Distributive, put into brackets $\overline{A}.B + A = B + A$ Distributive, expand brackets Distributive, put into brackets $\overline{A}.B + A = B + A$ Distributive, expand brackets Distributive Identity $1 + A = A$	

Example working 2:

 $\overline{W}.X.Z+W.Z+X.Y.\overline{Z}+\overline{W}.X.Y.1$ $\overline{W}.X.Z+W.Z+X.Y.\overline{Z}+\overline{W}.X.Y$ $Z.(\overline{W}.X+W)+X.Y.\overline{Z}+\overline{W}.X.Y$ $Z.(X+W)+X.Y.\overline{Z}+\overline{W}.X.Y$ $Z.X+Z.W+X.Y.\overline{Z}+\overline{W}.X.Y$ $Z.W+Z.X+X.Y.\overline{Z}+\overline{W}.X.Y$ $Z.W+X(Z+\overline{Z}.Y)+\overline{W}.X.Y$ $Z.W+X(Y+Z)+\overline{W}.X.Y$ $Z.W+X.Y+X.Z+\overline{W}.X.Y$ $Z.W+X.Y+X.Z+\overline{W}.X.Y$ $Z.W+X.Y+X.Z+\overline{W}.X.Y$

Identity A.1 = A Distributive, put into brackets Identity $\overline{A}.B + A = B + A$ Distribution, expand brackets Re-arrange terms Distribution, put into brackets Identity $\overline{A}.B + A = B + A$ Distribution, expand brackets Re-arrange terms Identity A + A.B = A

7	1	Mark is AO1 (I	Mark is AO1 (knowledge)											
			OF	R Gate		NANI	D Gate							
		lı	nputs	Output	Inp	outs	Output							
			0 0	0	0	0	1							
			0 1	1	0	1	1							
		Ţ,	1 0	1	1	0	1							
			1 1	1	1	1	0							

2 All marks AO2 (apply)

1 mark: Circuit inputs A and B connected as the inputs to an AND gate.

1 mark: Circuit input B connected as the input to a NOT gate.

A. NOT gate drawn as triangle without circle as BOD

1 mark: Output of a NOT gate and C connected as the inputs to an AND gate.

A. B and C going into AND gate if second mark point not awarded.

1 mark: Outputs of two AND gates connected to a NOR gate as inputs which has its output connected to Q. **A.** correct use of OR and NOT gate instead of NOR gate.

Max 3 if circuit logic not fully correct

Logically Equivalent Expressions

If a response includes a statement of a logically equivalent expression for example $\overline{A \cdot B} \cdot \overline{C \cdot \overline{B}}$ or $(\overline{A} + \overline{B}) \cdot (\overline{C} + B)$ or $\overline{\overline{A} + \overline{B}} + \overline{\overline{C} + B}$ then:

- If the student appears to have drawn a circuit for the expression given to them on the question paper mark against mark points above.
- If the student appears to have drawn a circuit for their logically equivalent expression refer the response to a team leader for marking.

If a response includes a statement of an expression that is **not** logically equivalent then mark against mark points above.

4

8	1	Mark is for AO1 (knowledge)	1
		Table C;	•
		R. if more than one lozenge shaded	

8 2 4 marks for AO2 (apply)

	INP	UTS		INT	ERME	NTS	OUTPUT		
Х3	X3 X2 X1 X0			Α	В	С	D	Е	Q
0	0	0	0	1	0	1	0	0	0
0	0	0	1	1	0	1	0	0	0
0	0	1	0	1	1	1	0	1	1
0	0	1	1	1	1	0	0	1	1
0	1	0	0	0	0	1	1	1	1
0	1	0	1	0	0	1	1	1	1
0	1	1	0	0	0	1	1	1	1
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	1
1	0	0	1	1	0	1	0	0	1

Marks are awarded for the correct values in the unshaded cells only.

1 mark: Correct values in columns A or C 1 mark: Correct values in columns B or D

1 mark: Correct values in column E1 mark: Correct values in column Q

Max 3 if any incorrect values in table

8	3	Mark is for AO2 (analyse)	4
		b; A. the middle bar	1

4

Qu	Pt	Marking guidance	Total marks
9	1	Mark is AO2 (apply)	1

Qu	Pt					Ma	arking	guid	ance					Total marks
9	2	All marks	AO2 (apply	')									3
			II.	NPUT	S				OUTI	PUTS				
			X2	X1	X0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
			0	0	0	1	0	0	0	0	0	0	0	
			0	0	1	0	1	0	0	0	0	0	0	
			0	1	0	0	0	1	0	0	0	0	0	
			0	1	1	0	0	0	1	0	0	0	0	
			1	0	0	0	0	0	0	1	0	0	0	
			1	0	1	0	0	0	0	0	1	0	0	
			1	1	0	0	0	0	0	0	0	1	0	
			1	1	1	0	0	0	0	0	0	0	1	
		1 mark: 1 i 2 marks: 4 3 marks: 8	rows	comp	leted	corre	ctly OI	₹						

Qu	Pt	Marking guidance				
9	3	All marks AO2 (analyse)				
		2 marks:	2			
		Output Qn is 1 / on / activated when the binary pattern input is the value n A. n for Qn				
		A. relationship between n and output Qn described by example eg if the value of the inputs is 0 then output 0 is on, if the value of the inputs is 1 output 1 is on, and so on.				
		A. it is a (3-bit) binary decoder				
		OR				
		1 mark: One / a different output is 1 / on / activated for each different input pattern // it converts a binary input to a decimal output				

Qu	Pt	Marking guidance	Total marks
9	4	Mark is AO2 (analyse)	4
		Q0;	1
		NE . 0	ļ

Que	estion										Marks
10	1	Mark is AC	Mark is AO2 (apply)								
			A	В	A + B	Ā	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	$\overline{\overline{\mathbf{A}}\cdot\overline{\mathbf{B}}}$		•
			0	0	0	1	1	1	0		
			0	1	1	1	0	0	1		
			1	0	1	0	1	0	1		
			1	1	1	0	0	0	1		
		1 mark: Ta	ıble c	orrec	tly complet	ted				-	

Que	estion		Marks
10	2	Mark is AO1 (understanding)	
			1
		De Morgan's (Law);	

Qu	Pt	Marking guidance	Total marks
11	1	All marks AO2 (apply) 1 mark: Output C is correct for all inputs 1 mark: Output D is correct for all inputs 1 mark: Circuit is fully correct and uses exactly two gates	3
		Example Circuits	
		3 mark solution:	
		A C	
		B	
		2 mark solution:	
		A C	
		B	
		2 mark solution: b	
		A C	
		B	

Qu	Pt	Marking guidance	Total marks
11	2	Mark is AO2 (analysis)	1
		It adds two bits (A. numbers) together // it is a half adder; A. it is an adder as BOD, it performs addition R. it is a full adder	

Qu	Pt	Marking guidance	Total marks
12	2	Mark is AO1 (understanding)	1
		Output Q will change to (reflect current value of) D;	
		 A. if D=1, Q will be set to 1 and if D=0, Q will be set to 0 A. if Q and D are the same then Q will not change and if Q and D are different then Q will change NE. Q will update 	

	Marking guidance		
3	All marks AO2 (apply)	marks 4	
	Marking guidance for examiners		
	 Award marks for working out until an incorrect step has been made. Ignore missing steps from the example solutions, as long as the jumps between steps are logically correct 		
	 If, in any one step, a candidate is simplifying different parts of an expression simultaneously, award all relevant marks for this multiple stage but don't awa any further marks for working in any parts simplified incorrectly. For example the expression P.P.(P+Q) + P.P.1 was changed to P.(P+Q)+P.0, the candida would get one mark for simplifying the first part to P.(P+Q) and could get furt 		
	1 mark for final answer: $A \oplus B$ A. XOR instead of \oplus A. $\overline{A} \cdot B + A \cdot \overline{B}$		
	Max 3 for working. Award up to three marks for applying each one of the three techniques (one mark per application):		
	of NOTs) that produces a simpler expression applying an identity other than cancelling NOTs that produces a simpler expression		
Max 2 for working if there is no successful application of De Morgan			
	Max 3 overall if any errors in working		
	Note: A simpler expression is one that is logically equivalent to the original expression but uses fewer logical operators.		
	Example Solution (1)		
	$\overline{A} \cdot (B \cdot C \cdot D + B \cdot C \cdot \overline{D} + B) + \overline{\overline{A} + B}$ $\overline{A} \cdot (B \cdot C \cdot (D + \overline{D}) + \overline{D}) + \overline{\overline{A} + B}$ Factorising		
	$\frac{1}{1}$ (B G 1 B) $\frac{1}{1}$ B		
	$\overline{A} \cdot B + A \cdot \overline{B}$ Application of De Morgan		
		 Award marks for working out until an incorrect step has been made. Ignore missing steps from the example solutions, as long as the jumps between steps are logically correct. If, in any one step, a candidate is simplifying different parts of an expression simultaneously, award all relevant marks for this multiple stage but don't award any further marks for working in any parts simplified incorrectly. For example, if the expression P.P.(P+Q) + P.P.1 was changed to P.(P+Q)+P.0, the candidate would get one mark for simplifying the first part to P.(P+Q) and could get further marks for correctly simplifying this part of the expression further but should not be awarded marks for simplifying the incorrectly changed part P.0 (ie to 0). 1 mark for final answer:A ⊕ B A. XOR instead of ⊕ A. Ā · B + A · B Max 3 for working. Award up to three marks for applying each one of the three techniques (one mark per application): a successful application of De Morgan's Law (and any associated cancellation of NOTs) that produces a simpler expression applying an identity other than cancelling NOTs that produces a simpler expression successfully expanding brackets // factorising. Max 2 for working if there is no successful application of De Morgan Max 3 overall if any errors in working Note: A simpler expression is one that is logically equivalent to the original expression but uses fewer logical operators. Example Solution (1) Ā · (B · C · D + B · C · D̄ + B) + Ā + B Ā · (B · C · D + B) + Ā + B By X + X̄ = 1 Ā · (B · C · H B) + Ā + B By X + Ȳ = 1 Ā · (B · C · H B) + Ā + B By X + Ȳ = 1 By X + Ȳ = X 	

Example Solution (2)

$\overline{A} \cdot (B \cdot C \cdot D + B \cdot C \cdot \overline{D} + B) + \overline{\overline{A} + B}$	
$\overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot C \cdot \overline{D} + \overline{A} \cdot B + \overline{\overline{A} + B}$	Expand brackets
$\overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot C \cdot \overline{D} + \overline{A} \cdot B + A \cdot \overline{B}$	Application of De Morgan
$\overline{A} \cdot B \cdot C \cdot (D + \overline{D}) + \overline{A} \cdot B + A \cdot \overline{B}$	Factorising
$\overline{A} \cdot B \cdot C \cdot 1 + \overline{A} \cdot B + A \cdot \overline{B}$	By $X + \bar{X} = 1$
$\overline{A} \cdot B \cdot C + \overline{A} \cdot B + A \cdot \overline{B}$	By $X \cdot 1 = X$
$\overline{A} \cdot B + A \cdot \overline{B}$	By $X + X \cdot Y = X$
$A \oplus B$	Simplification to XOR

Example Solution (3)

$$\overline{A} \cdot (B \cdot C \cdot D + B \cdot C \cdot \overline{D} + B) + \overline{A} + B$$

$$\overline{A} \cdot (B \cdot C \cdot D + B) + \overline{A} + B$$

$$By X + X \cdot Y = X \text{ (where } X = B \text{ and } Y = C \cdot \overline{D} \text{)}$$

$$By X + X \cdot Y = X \text{ (where } X = B \text{ and } Y = C \cdot \overline{D} \text{)}$$

$$Ay = B \text{ and } Y = C \cdot D \text{)}$$

$$Ay = B \text{ (and } Y = C \cdot D \text{)}$$

$$Ay = B \text{ (by } X + X \cdot Y = X \text{)}$$

$$Ay = B \text{ (constant)}$$

$$Ay = B \text{ (constant)$$

Example Solution (4)

$$\overline{A} \cdot (B \cdot C \cdot D + B \cdot C \cdot \overline{D} + B) + \overline{\overline{A} + B}$$

$$\overline{A} \cdot B + \overline{\overline{A} + B}$$

$$By X + X \cdot Y = X - Award$$

$$2 \text{ marks as rule applied}$$

$$twice (where X = B \text{ and}$$

$$Y = C \cdot \overline{D} \text{ then } Y = C \cdot D)$$

$$\overline{A} \cdot B + A \cdot \overline{B}$$

$$A \oplus B$$

$$Simplification to XOR$$

Example Solution (5)

$$\overline{A} \cdot (B \cdot C \cdot D + B \cdot C \cdot \overline{D} + B) + \overline{\overline{A} + B}$$

$$\overline{A} \cdot (B \cdot (C \cdot D + C \cdot \overline{D} + 1)) + \overline{\overline{A} + B}$$

$$\overline{A} \cdot (B \cdot 1) + \overline{\overline{A} + B}$$

$$\overline{A} \cdot B + \overline{\overline{A} + B}$$

$$\overline{A} \cdot B + A \cdot \overline{B}$$

$$A \oplus B$$
Factorising
$$By X + 1 = 1$$

$$By X \cdot 1 = X$$
Application of De Morgan
$$Simplification to XOR$$